112,645 research outputs found

    A Model for Star Formation, Gas Flows and Chemical Evolution in Galaxies at High Redshifts

    Full text link
    Motivated by the increasing use of the Kennicutt-Schmidt (K-S) star formation law to interpret observations of high redshift galaxies, the importance of gas accretion to galaxy formation, and the recent observations of chemical abundances in galaxies at z~2-3, I use simple analytical models to assess the consistency of these processes of galaxy evolution with observations and with each other. I derive the time dependence of star formation implied by the K-S law, and show that the sustained high star formation rates observed in galaxies at z~2-3 require the accretion of additional gas. A model in which the gas accretion rate is approximately equal to the combined star formation and outflow rates broadly reproduces the observed trends of star formation rate with galaxy age. Using an analytical description of chemical evolution, I also show that this model, further constrained to have an outflow rate roughly equal to the star formation rate, reproduces the observed mass-metallicity relation at z~2.Comment: 7 pages, 3 figures. Accepted for publication in Ap

    Effective Low-Energy Model for f-Electron Delocalization

    Full text link
    We consider a Periodic Anderson Model (PAM) with a momentum-dependent inter-band hybridization that is strongly suppressed near the Fermi level. Under these conditions, we reduce the PAM to an effective low-energy Hamiltonian, HeffH_{\rm eff}, by expanding in the small parameter V0/tV_0/t ( V0V_0 is the maximum inter-band hybridization amplitude and tt is the hopping integral of the broad band). The resulting model consists of a t-J f-band coupled via the Kondo exchange to the electrons in the broad band. HeffH_{\rm eff} allows for studying the f-electron delocalization transition. The result is a doping-induced Mott transition for the f-electron delocalization, which we demonstrate by density-matrix renormalization group (DMRG) calculations

    Amplification by stochastic interference

    Full text link
    A new method is introduced to obtain a strong signal by the interference of weak signals in noisy channels. The method is based on the interference of 1/f noise from parallel channels. One realization of stochastic interference is the auditory nervous system. Stochastic interference may have broad potential applications in the information transmission by parallel noisy channels

    Public Involvement in research within care homes: Benefits and challenges in the APPROACH Study

    Get PDF
    Public involvement in research (PIR) can improve research design and recruitment. Less is known about how PIR enhances the experience of participation and enriches the data collection process. In a study to evaluate how UK care homes and primary health care services achieve integrated working to promote older people’s health, PIR was integrated throughout the research processes. Objectives This paper aims to present one way in which PIR has been integrated into the design and delivery of a multi-site research study based in care homes. Design A prospective case study design, with an embedded qualitative evaluation of PIR activity. Setting and Participants Data collection was undertaken in six care homes in three sites in England. Six PIR members participated: all had prior personal or work experience in care homes. Data Collection Qualitative data collection involved discussion groups, and site-specific meetings to review experiences of participation, benefits and challenges, and completion of structured fieldwork notes after each care home visit. Results PIR members supported: recruitment, resident and staff interviews and participated in data interpretation. Benefits of PIR work were resident engagement that minimised distress and made best use of limited research resources. Challenges concerned communication and scheduling. Researcher support for PIR involvement was resource intensive. Discussion and Conclusions Clearly defined roles with identified training and support facilitated involvement in different aspectsPublic Involvement in Research members of the research team: Gail Capstick, Marion Cowie, Derek Hope, Rita Hewitt, Alex Mendoza, John Willmott. Also the involvement of Steven Iliffe and Heather Gag

    Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

    Full text link
    Tunneling spectroscopy of a Nb coupled carbon nanotube quantum dot reveals the formation of pairs of Andreev bound states (ABS) within the superconducting gap. A weak replica of the lower ABS is found, which is generated by quasi-particle tunnelling from the ABS to the Al tunnel probe. An inversion of the ABS-dispersion is observed at elevated temperatures, which signals the thermal occupation of the upper ABS. Our experimental findings are well supported by model calculations based on the superconducting Anderson model.Comment: 6 pages, 7 figure

    Universality and itinerant ferromagnetism in rotating strongly interacting Fermi gases

    Get PDF
    We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parameterizing the solutions in the rotating frame we find that the energy and entropy are universal for all rotations in the strongly interacting regime. Additionally, we find that rotation suppresses the onset of itinerant ferromagnetism in strongly interacting repulsive three-body systems.Comment: 5 pages with 3 figure

    Fine-Structure FeII* Emission and Resonant MgII Emission in z = 1 Star-Forming Galaxies

    Full text link
    We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower stellar masses than the sample as a whole. MgII emission strength exhibits the strongest correlation with specific star-formation rate, although we find evidence that dust attenuation and stellar mass also play roles in the regulation of MgII emission. Future integral field unit observations of the spatial extent of FeII* and MgII emission in galaxies with high specific star-formation rates, low dust attenuations, and low stellar masses will be important for probing the morphology of circumgalactic gas.Comment: 29 pages, 22 figures, 2 tables; accepted to Ap

    Emission lines and optical continuum in low-luminosity radio galaxies

    Full text link
    We present spectroscopic observations of a complete sub-sample of 13 low-luminosity radio galaxies selected from the 2Jy sample. The underlying continuum in these sources is carefully modelled in order to make a much-needed comparison between the emission line and continuum properties of FRIs with those of other classes of radio sources. We find that 5 galaxies in the sample show a measurable UV excess: 2 of the these sources are BL Lacs and in the remaining 3 galaxies we argue that the most likely contributor to the UV excess is a young stellar component. Excluding the BL Lacs, we therefore find that \~30% of the sample show evidence for young stars, which is similar to the results obtained for higher luminosity samples. We compare our results with far-infrared measurements in order to investigate the far-infrared-starburst link. The nature of the optical-radio correlations is investigated in light of this new available data and, in contrast to previous studies, we find that the FRI sources follow the correlations with a similar slope to that found for the FRIIs. Finally, we compare the luminosity of the emission lines in the FRI and BL Lac sources and find a significant difference in the [OIII] line luminosities of the two groups. Our results are discussed in the context of the unified schemes.Comment: 18 pages, 31 figures, MNRAS in press, (all enquiries to Clive Tadhunter ([email protected])

    Precise Variational Calculation For The Doubly Excited State (2p^2)^3P^e of Helium

    Full text link
    Highly precise variational calculations of non-relativistic energies of the (2p^2)^3P^e state of Helium atom are presented.We get an upper bound energy E=-0.71050015565678 a.u.,the lowest yet obtained.Comment: 5 pages, 1 tabl
    • …
    corecore